A Possibilistic Approach for Automatic Word Sense Disambiguation

نویسندگان

  • Oussama Ben Khiroun
  • Bilel Elayeb
  • Ibrahim Bounhas
  • Fabrice Evrard
  • Narjès Bellamine Ben Saoud
چکیده

This paper presents and experiments a new approach for automatic word sense disambiguation (WSD) applied for French texts. First, we are inspired from possibility theory by taking advantage of a double relevance measure (possibility and necessity) between words and their contexts. Second, we propose, analyze and compare two different training methods: judgment and dictionary based training. Third, we summarize and discuss the overall performance of the various performed tests in a global analysis way. In order to assess and compare our approach with similar WSD systems we performed experiments on the standard ROMANSEVAL test collection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Data Integration through Disambiguation Techniques

In this paper Word Sense Disambiguation (WSD) issue in the context of data integration is outlined and an Approximate Word Sense Disambiguation approach (AWSD) is proposed for the automatic lexical annotation of structured and semi-structured data sources.

متن کامل

Graph Based Algorithms for Word Sense Induction and Disambiguation

This paper presents a survey of graph based methods for word sense induction and disambiguation. Many areas of Natural Language Processing like Word Sense Disambiguation (WSD), text summarization, keyword extraction make use of Graph based methods. The very idea behind graph based approach is to formulate the problems in graph setting and apply clustering to obtain a set of clusters (senses). T...

متن کامل

A Fully Unsupervised Word Sense Disambiguation Method Using Dependency Knowledge

Word sense disambiguation is the process of determining which sense of a word is used in a given context. Due to its importance in understanding semantics of natural languages, word sense disambiguation has been extensively studied in Computational Linguistics. However, existing methods either are brittle and narrowly focus on specific topics or words, or provide only mediocre performance in re...

متن کامل

Word Sense Disambiguation for All Words without Hard Labor

While the most accurate word sense disambiguation systems are built using supervised learning from sense-tagged data, scaling them up to all words of a language has proved elusive, since preparing a sense-tagged corpus for all words of a language is time-consuming and human labor intensive. In this paper, we propose and implement a completely automatic approach to scale up word sense disambigua...

متن کامل

رفع ابهام معنایی واژگان مبهم فارسی با مدل موضوعی LDA

Word sense disambiguation is the task of identifying the correct sense for the word in a given context among a finite set of possible sense. In this paper a model for farsi word sense disambiguation is presented. The model use two group of features: first, all word and stop words around target word and topic models as second features. We extract topics from a farsi corpus with Latent Dirichlet ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012